Spanning trees on graphs and lattices in d dimensions
نویسندگان
چکیده
The problem of enumerating spanning trees on graphs and lattices is considered. We obtain bounds on the number of spanning trees NST and establish inequalities relating the numbers of spanning trees of different graphs or lattices. A general formulation is presented for the enumeration of spanning trees on lattices in d 2 dimensions, and is applied to the hypercubic, body-centred cubic, face-centred cubic and specific planar lattices including the kagomé, diced, 4–8–8 (bathroom-tile), Union Jack and 3–12–12 lattices. This leads to closed-form expressions for NST for these lattices of finite sizes. We prove a theorem concerning the classes of graphs and lattices L with the property that NST ∼ exp(nzL) as the number of vertices n → ∞, where zL is a finite non-zero constant. This includes the bulk limit of lattices in any spatial dimension, and also sections of lattices whose lengths in some dimensions go to infinity while others are finite. We evaluate zL exactly for the lattices we consider, and discuss the dependence of zL on d and the lattice coordination number. We also establish a relation connecting zL to the free energy of the critical Ising model for planar lattices.
منابع مشابه
Counting the number of spanning trees of graphs
A spanning tree of graph G is a spanning subgraph of G that is a tree. In this paper, we focus our attention on (n,m) graphs, where m = n, n + 1, n + 2, n+3 and n + 4. We also determine some coefficients of the Laplacian characteristic polynomial of fullerene graphs.
متن کاملNUMBER OF SPANNING TREES FOR DIFFERENT PRODUCT GRAPHS
In this paper simple formulae are derived for calculating the number of spanning trees of different product graphs. The products considered in here consists of Cartesian, strong Cartesian, direct, Lexicographic and double graph. For this purpose, the Laplacian matrices of these product graphs are used. Form some of these products simple formulae are derived and whenever direct formulation was n...
متن کاملNonuniversality of invasion percolation in two-dimensional systems.
Employing highly efficient algorithms for simulating invasion percolation (IP) with trapping, we obtain precise estimates for the fractal dimensions of the sample-spanning cluster, the backbone, and the minimal path in a variety of two-dimensional lattices. The results indicate that these quantities are nonuniversal and vary with the coordination number Z of the lattices. In particular, while t...
متن کاملDistributive Lattices from Graphs
Several instances of distributive lattices on graph structures are known. This includes c-orientations (Propp), α-orientations of planar graphs (Felsner/de Mendez) planar flows (Khuller, Naor and Klein) as well as some more special instances, e.g., spanning trees of a planar graph, matchings of planar bipartite graphs and Schnyder woods. We provide a characterization of upper locally distributi...
متن کاملSpanning trees on hypercubic lattices and nonorientable surfaces
We consider the problem of enumerating spanning trees on lattices. Closed-form expressions are obtained for the spanning tree generating function for a hypercubic lattice of size N1×N2×· · ·×Nd in d dimensions under free, periodic, and a combination of free and periodic boundary conditions. Results are also obtained for a simple quartic net embedded on two non-orientable surfaces, a Möbius stri...
متن کامل